| [1] 吕承侃,沈飞,张正涛,等.图像异常检测研究现状综述.自动化学报, 2022, 48(6): 1402-1428.
(LÜ C K, SHEN F, ZHANG Z T, et al. Review of Image Anomaly Detection. Acta Automatica Sinica, 2022, 48(6): 1402-1428.)
[2] AN J, CHO S. Variational Autoencoder Based Anomaly Detection Using Reconstruction Probability[C/OL]. [2025-09-23]. http://dm.snu.ac.kr/static/docs/TR/SNUDM-TR-2015-03.pdf.
[3] SCHLEGL T, SEEBÖCK P, WALDSTEIN S M, et al. f-AnoGAN: Fast Unsupervised Anomaly Detection with Generative Adversarial Networks. Medical Image Analysis, 2019, 54: 30-44.
[4] BERGMAN L, HOSHEN Y. Classification-Based Anomaly Detection for General Data[C/OL]. [2025-09-23]. https://arxiv.org/pdf/2005.02359.
[5] ROTH K, PEMULA L, ZEPEDA J, et al. Towards Total Recall in Industrial Anomaly Detection // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2022: 14298-14308.
[6] HO J, JAIN A, ABBEEL P. Denoising Diffusion Probabilistic Mo-dels // Proc of the 34th International Conference on Neural Informa-tion Processing Systems. Cambridge, USA: MIT Press, 2020: 6840-6851.
[7] BEIZAEE F, LODYGENSKY G A, DESROSIERS C, et al. Correcting Deviations from Normality: A Reformulated Diffusion Model for Multi-class Unsupervised Anomaly Detection // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2025: 19088-19097.
[8] BERGMANN P, FAUSER M, SATTLEGGER D, et al. MVTec AD-A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2019: 9584-9592.
[9] ZOU Y, JEONG J, PEMULA L, et al. SPot-the-Difference Self-Supervised Pre-training for Anomaly Detection and Segmentation[C/OL].[2025-09-23]. https://arxiv.org/pdf/2207.14315.
[10] DEFARD T, SETKOV A, LOESCH A, et al. PaDiM: A Patch Distribution Modeling Framework for Anomaly Detection and Loca-lization // Proc of the International Conference Workshops and Challengers on Pattern Recognition. Berlin, Germany: Springer, 2021: 475-489.
[11] WANG G D, HAN S M, DING E R, et al. Student-Teacher Fea-ture Pyramid Matching for Anomaly Detection[C/OL].[2025-09-23]. https://www.bmva-archive.org.uk/bmvc/2021/assets/papers/1273.pdf.
[12] DENG H Q, LI X Y.Anomaly Detection via Reverse Distillation from One-Class Embedding // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2022: 9727-9736.
[13] GUDOVSKIY D, ISHIZAKA S, KOZUKA K.CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows // Proc of the IEEE/CVF Winter Confe-rence on Applications of Computer Vision. Washington, USA: IEEE, 2022: 1819-1828.
[14] YU J W, ZHENG Y, WANG X, et al. FastFlow: Unsupervised Anomaly Detection and Localization via 2D Normalizing Flows[C/OL].[2025-09-23]. https://arxiv.org/pdf/2111.07677.
[15] LI C L, SOHN K, YOON J, et al. CutPaste: Self-Supervised Lear-ning for Anomaly Detection and Localization // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2021: 9659-9669.
[16] ZAVRTANIK V, KRISTAN M, SKOC?J D. DRAEM: A Discriminatively Trained Reconstruction Embedding for Surface Anomaly Detection // Proc of the IEEE/CVF International Conference on Computer Vision. Washington, USA: IEEE, 2021: 8310-8319.
[17] WYATT J, LEACH A, SCHMON S M, et al. AnoDDPM: Ano-maly Detection with Denoising Diffusion Probabilistic Models Using Simplex Noise // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Washington, USA: IEEE, 2022: 649-655.
[18] MOUSAKHAN A, BROX T, TAYYUB J.Anomaly Detection with Conditioned Denoising Diffusion Models // Proc of the 46th DAGM German Conference on Pattern Recognition. Berlin, Germany: Springer, 2025: 181-195.
[19] YOU Z Y, CUI L, SHEN Y J, et al. UniAD: A Unified Model for Multi-class Anomaly Detection // Proc of the 36th International Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2022: 4571-4584.
[20] LU R Y, WU Y J, TIAN L, et al. Hierarchical Vector Quantized Transformer for Multi-class Unsupervised Anomaly Detection // Proc of the 37th International Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2023: 8487-8500.
[21] JIANG X, CHEN Y, NIE Q, et al. Toward Multi-class Anomaly Detection: Exploring Class-Aware Unified Model against Inter-Class Interference[C/OL].[2025-09-23]. https://arxiv.org/pdf/2403.14213.
[22] HE H Y, ZHANG J N, CHEN H X, et al. A Diffusion-Based Framework for Multi-class Anomaly Detection. Proc of the AAAI Conference on Artificial Intelligence, 2024, 38(8): 8472-8480.
[23] HE H Y, BAI Y H, ZHANG J N, et al. MambaAD: Exploring State Space Models for Multi-class Unsupervised Anomaly Detection // Proc of the 38th International Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2024: 71152-71187.
[24] GAO B B.Learning to Detect Multi-class Anomalies with Just One Normal Image Prompt(OneNIP) // Proc of the 18th European Conference on Computer Vision. Berlin, Germany: Springer, 2024: 454-470.
[25] GU Z P, ZHU B K, ZHU G B, et al. UniVAD: A Training-Free Unified Model for Few-Shot Visual Anomaly Detection // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2025: 15194-15203.
[26] SONG J M, MENG C L, ERMON S. Denoising Diffusion Implicit Models[C/OL]. [2025-09-23]. https://arxiv.org/pdf/2010.02502.
[27] ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency-Tuned Salient Region Detection // Proc of the IEEE Conference on Com-puter Vision and Pattern Recognition. Washington, USA: IEEE, 2009: 1597-1604.
[28] ROMBACH R, BLATTMANN A, LORENZ D, et al. High-Resolution Image Synthesis with Latent Diffusion Models // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2022: 10674-10685.
[29] LIU Z K, ZHOU Y M, XU Y S, et al. SimpleNet: A Simple Network for Image Anomaly Detection and Localization // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2023: 20402-20411.
[30] ZHANG X, LI S Y, LI X, et al. DeSTSeg: Segmentation Guided Denoising Student-Teacher for Anomaly Detection // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2023: 3914-3923.
[31] MENG S Y, MENG W C, ZHOU Q H, et al. MoEAD: A Parameter-Efficient Model for Multi-class Anomaly Detection // Proc of the 18th European Conference on Computer Vision. Berlin, Germany: Springer, 2024: 345-361.
[32] YAO H, LIU M, YIN Z C, et al. GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection // Proc of the 18th European Con-ference on Computer Vision. Berlin, Germany: Springer, 2024: 1-17. |